Method Selection and
Planning

Group Number: 10

Team Name: Decassociation

Group Member Names:
Mohammad Abdullah
Tom Broadbent
Poppy Fynes
Owen Lister
Michael Marples
Lucy Walsh



Method selection and planning

We agreed to use the Agile model as the systems development life cycle (SDLC) for project
management. Under this, we were able to better address requirements that changed and we
were able to respond when the implementation needed to be revised after consulting with
the customer.

The Agile principles prioritise "responding to change over following a plan" and demand that
"at regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behaviour accordingly”. This was all crucial while working under the given time
constraints and requirement volatility. Agile also emphasises how "business people and
developers must work together daily throughout the project". Moreover, the three pillars of
Scrum are transparency, inspection and adaptation.

Due to the focus on adaptability and regular communication with the customer, we chose
Scrum as our methodology. We worked in sprints between weekly team meetings. During
these sprints, members of the team worked on tasks they had chosen. Some tasks (such as
programming/implementation) were worked on by more than one person at a time; this
allowed each of us to work according to our individual strengths as we perceived them.
During team meetings, we discussed the tasks each of us had taken on and how we had
progressed. Thus, everyone received feedback and it allowed us to decide what tasks
should be done next and by whom.

Google Drive allowed us to create a commonly-accessible space for storing files with its
feature to create shared drives. Its integration with Google Docs facilitated working
collaboratively on deliverables that required word processing, as well as auxiliary activities
like taking notes for the meetings. The service being platform-agnostic by virtue of running in
a browser environment made it easy to get started, especially as everyone was familiar with
it. It keeps a history of all changes made to a document, which allows team members to see
who made changes and when. This allows for accountability and transparency in the
development process and makes Google Drive a suitable tool for Agile development teams.
We used Google Sheets to create the Gantt charts as part of planning.

GitHub uses Git, a distributed version control system that allows multiple users to work on
the same codebase simultaneously; this allows for real-time collaboration. It also allows for
easy branching and merging of code, which supports the iterative and incremental nature of
Agile development. Pull requests allow for code review and feedback before changes are
incorporated into the main codebase. This promotes collaboration and accountability among
team members. GitHub organizations were used by our team to manage access to the
codebase.

To create our website, we used Github Pages, and to be able to work on the implementation
of the project collaboratively we used Github Organizations. Making a website using Pages

entailed making a repository called decassociation.github.io. With Jekyll themes, we did not
have to spend much time writing boilerplate code and had a functioning site quickly.



We arranged our meetings and conducted them on Discord; it allows for voice
communication and video (with screen-sharing). Everyone in our team was familiar with the
interface and features. Discord allows for the sharing of files, images, links, and code
rendered in monospace font with syntax highlighting for Java.

We found Intellid IDEA to be suitable for this project. Built-in support for Java and support for
Gradle facilitated the onboarding of team members. Moreover, it has the ability to quickly
navigate and refactor code, making it easy to make changes and iterate on the project
afterwards. The alternatives that we considered were Eclipse (due to marginal familiarity with
it from lectures) and Visual Studio Code. However, the former did not come with as many
features "out of the box" and the latter may have taken time to integrate with different
tools/frameworks so we did not use it.

Our approach to team organisation involved collectively identifying key tasks that needed to
be completed and the prerequisites to these tasks, as well as determining a timeframe for
when they needed to be done. From that point, members of the group picked the tasks that
they wanted to work on — while making sure everything identified will be worked on by at
least one person, thus ensuring progress.

This could accurately be described as an organic centralism; it emphasises the central role
of (a) collective leadership in guiding us, while also allowing for decentralised
decision-making and autonomy at 'lower' levels.

Organic centralism is a method for (political) organisation and seeks to balance the need for
a centralised leadership with the need for onboarding individual initiative and addressing
individual concerns. It is usually in contrast to traditional centralism which emphasises a
strict hierarchy, strict rules and a top-down decision-making process. This organic centralism
allowed us to be more flexible and encouraged participation of all members in the
decision-making process, while still maintaining a central leadership that sets the overall
direction. It also encourages the development of a collective consciousness and the unity of
the group and can be applied to software development teams because it aims to create a
more effective organisation by leveraging the strengths of all members.

This approach allowed us to have good task throughput; if there was something that needed
to be done, it was chosen by a person. This is a benefit given the nature of the project,
where a stakeholder might need to see progress regularly. A benefit afforded by this
approach (with respect to the team members) is the engagement of individual members with
the tasks; we chose the tasks we wanted to do.

Our general plan was to do development in 4 stages.

1. Conceptualisation — the team should brainstorm different concepts, gather inspiration
and decide on things like target audience and platform. The team should also
conduct a requirement elicitation and ask the customer about any specifics.

2. Pre-production — we should develop a more detailed idea of the game, including the
game’s mechanics, art style, and interface. The team should also create a game
design document that outlines the game's features, mechanics, and overall design.
This document will serve as a guide for the rest of the development process.



3. Production — we will start building the game. The team will create the game's assets,
such as art, sound, and music. The team will also code the game's mechanics and
implement the game's systems. This phase will require the team to work closely
together and collaborate effectively.

4. Testing (followed by release). During this phase, the team will test the game to make
sure that it works properly and is free of bugs.

In the second week of our project, we discussed our plan. As part of that process, we
created a list of tasks (product backlog) that would need to be completed at some point
during the development of the game. Since we had decided to use Scrum, some of the time
during practicals was spent discussing our next steps and delineating these into tasks (sprint
backlog) that members of the team could work on over the next week (our sprint duration).

In the below image, it shows that we had a group of tasks associated with architecture
design, and these serve as the design documents outlined in stage 2. Some of these tasks
grouped together will be mutually dependent, and others constitute 'subtasks'.

Date started: 16/11/2022

Gantt Charting Michael primarily

Talk to stakeholder

-Acquire information from the hostage Everyone

-Use information to formulate plan

Method selection and planning Owen/ Mo

Write up requirements in a more
cohesive form

Tom/ Cwen

Write risk assessment Lucy Primarily

Design architecture Joint team

-Make diagrams for how it will fit
together/ work

-Specify objects and indicate relations Michael pnmarity
-Do responsibility driven design
-Use abstraction of functions

-Make some vague psuedo code

Decide on assets
-Style/ Source
-Acquire said assets

-Possibly use placeholders at first and
upgrade later

For example, acquiring assets is contingent on deciding on the style thereof. While this
relationship is not explicitly stated on our chart, it is heavily implied and semantically
apparent.

For weekly snapshots of our plan (i.e. Gant charts and weekly meeting notes which contain
progress made and next steps each week), see our website: https://decassociation.github.io/


https://decassociation.github.io/

