Requirements
Group Number: 10

Team Name: Decassociation

Group Member Names:
Mohammad Abdullah
Tom Broadbent
Poppy Fynes
Owen Lister
Michael Marples
Lucy Walsh

The 2D video game, Piazza Panic, shall allow players to manage staff around a kitchen, to
prepare and cook dishes for customers who enter the Piazza restaurant and request orders
for these dishes.

To ensure that we develop a game that accurately reflects what the customer envisions, we
have elicited and detailed a set of requirements for the game in this document. These
requirements were elicited through a rigorous process of breaking down the Piazza Panic
specification from our customer, Antonio Garcia-Dominguez, and then speaking with them in
an open interview to determine specific requirements that were not detailed within the brief.
We came up with a set of questions that we as a team believed needed to be answered for
us to be able to create the customer’s vision, and these questions were answered. On top of
this, the customer is representing the University of York Communications Officer, who may
want to use our game for promotional activities such as open days, so we had to make sure
we covered all grounds.

The requirements engineering process allows the customer to validate the end product we
create, to ensure that it is what they actually wanted from us. Therefore the purpose of the
requirements that we procured is to appropriately represent the needs of the customer and
their vision for the product (as accurately as we can, which is challenging given that most
requirements are interpreted in different ways by different people). Consequently, we have
developed a set of requirements that is split into 3 categories: user requirements, functional
requirements and non-functional requirements, where the functional and non-functional
requirements are the system requirements. User requirements define the features of a
system available to users, in general terms that any stakeholder can understand and the
system requirements specify exactly how the system will meet the needs of the users, how it
will provide features to the user, in a more technical format. Therefore, one user requirement
may correspond to multiple functional requirements. We have split the system requirements
into two groups because after research, we found that the two classes are significant for
differentiating between requirements for responses to particular situations and defining
behaviours for specific features of a system (functional), and those requirements which apply
to a system as a whole (non-functional) [1], such as those which define loading times.

We have detailed each of the user, functional and non-functional requirements in three
tables below. Each requirement is formatted in a specific way, however all of them have a
unique identifier (the ID column), with each type of requirement having its own unique prefix,
so that we can reference specific requirements in any context, without confusion or
misinterpretation of which requirement(s) we are actually referring to. Building on our
standard for identifying requirements, we also standardised keywords to specify the priority
of user requirements, based on lan Sommerville’s recommendation [2]. The “Shall” keyword
represents a requirement that must be satisfied. “Should” represents requirements that are
desirable but not absolutely necessary and “May” is for requirements that would be nice to
have but are by no means essential. Last on the structure of our requirements specification,
we have a description of each requirement in the tables so it's easy to see our rationale
behind the requirements, and we also have a it criteria’ for our non-functional requirements
which specifies a way for us to measure our implementation of each of those requirements,
otherwise it may be quite difficult to know how to meet each requirement and for the
customer and stakeholders to actually verify whether we have met the requirements.

User requirements:

be served.

ID Description Priority

UR_GAME_TIME Users should ideally not spend more than 10 Should
minutes playing one scenario.

UR_PAUSE Should be able to pause the game and resume Should

UR_MAIN_MENU Main menu to start game from, possibly access Shall
settings, leaderboards and credits

UR_CREDITS Users should be able to view names of group Should
members and creators of assets used

UR_COLOUR_BLIND User should not have difficulty distinguishing 2 Shall
objects if they are colour blind

UR_CONTROL_CHANGE Allow users to customise controls Shall

UR_TUTORIAL Have some sort of tutorial / controls / how to play May
screen

UR_MOBILE_SUPPORT Allow game to be played on mobile devices as May
well as desktop

UR_SYSTEM_SPEC Target platform should be low power - eg laptops Shall

UR_SOUND Should have sound effects and background music | Shall

UR_COOKS There should be 2 cooks that are equal, and can Shall
do different parts of the same recipe or do different
recipes.

UR_SCENARIO_MODE A scenario-based mode with a fixed number of 5 Shall
customers to be served, who will arrive one by
one, and will each wait indefinitely for their orders.

UR_RECIPES Users will have different recipes to make (burger & | Shall
salad at least, but not a pizza or jacket potato)

UR_COOKING_STATIONS Users should have different stations at which to Shall
cook, prepare and interact with the different types
of ingredients - cutting, baking, frying, serving.

UR_PANTRY There should be a pantry area with ingredient Shall
stations for all recipes (burgers and salads).

UR _INGREDIENTS There should be an ingredient for every Shall
component of every recipe in the game, with each
ingredient able to be picked up by a cook at an
ingredient station

UR_CARRY Players should be able to carry a ‘stack’ of Shall
ingredients and should be able to carry complete
recipes

UR_SERVE There must be a counter where customers wait to | Shall

UR_TIMER

The player should be timed on how long it takes to
complete the scenario (serve all customers) as
customers wait indefinitely for their orders.

Shall

Functional requirements:

with what is in front of them (including
serving customers)

ID Description User requirements

FR_SWITCH_COOK Players should be able to switch UR_COOKS
between 2 cooks

FR_MOVE_COOK Should be able to move all cooks UR_COOKS

FR_COOK_INTERACT Players should be able to have the UR_COOKS,
cook they are currently using, interact | UR_SERVE

FR_DROP_INGREDIENTS

Cooks should be able to interact with
a cooking station to drop the top
ingredient of the stack they’re carrying
onto the station

UR_COOKING_STATIO
NS

FR_COOKING_STATIONS

Cooks should be able to use multiple
cooking stations to complete different
parts of a recipe (e.g. to flip a burger
at one and then make the burger up
at a separate station)

UR_RECIPES,
UR_COOKING_STATIO
NS,

the game, and then allow user to later
resume the game from this screen

FR_INGREDIENT_STATIONS | Cooks should be able to interact with | UR_RECIPES,
an ingredient station in the pantry to UR_PANTRY,
add an ingredient to the top of the UR_CARRY
stack of ingredients they are carrying.

FR_UNLIMITED_INGREDIENT | Ingredients at the ingredient stations UR_PANTRY

S in the pantry should never run out

FR_CREDITS_SCREEN Display names of group members and | UR_CREDITS
credit any assets used

FR_PAUSE_SCREEN Allow user to press a button to pause | UR_PAUSE

FR_MAIN_MENU

Game should have main menu from
which the user can start playing,
possibly access settings and credits

UR_MAIN_MENU

FR_CONTROL_CHANGE

Have a menu where users can
customise the controls of the game,
possibly also a console as this allows
for far better customisation e.g. bind
one key to multiple actions, one action
to multiple keys, completely unbind
action etc

UR_CONTROL_CHAN
GE

FR_TIMER

The game should only time and
display how long it takes to complete

UR_TIMER

the scenario (serve all customers).

FR_TUTORIAL The game may provide a screen UR_TUTORIAL
which teaches the user how to play,
accessible from the main menu
FR_TUTORIAL_CONTROL_C | The tutorial screen should adapt to UR_TUTORIAL,

device

and buttons/joysticks appear on
screen when played on a mobile

HANGE the customised controls UR_CONTROL_CHAN
GE
FR_MOBILE Have touch-screen friendly controls UR_MOBILE_SUPPOR

T

Non-Functional requirements:

ID

Description

User requirements

Fit criteria

NFR_COLOUR_BLI
ND

Keep colour blindness in
mind, ensure objects can
be distinguished by more
than just colour

UR_COLOUR_BL
IND

90% of colour blind users
should not suffer from any
significant difficulties
while playing the game

NFR_QUICK_COO
K

A recipe should take
around 2 minutes to make,
so each ingredient should
take around 30 seconds to
prepare

UR_GAME_TIME

75% of users should
complete a 5 customer
scenario in under 10
minutes

NFR_LOW_SPEC

The game should perform
acceptably on low end
machines like laptops by
making use of things like
simple assets and efficient
algorithms

UR_SYSTEM_SP
EC

The game should run at
more than 30 frames per
second on a laptop with
an Intel core i3 and 4GB
of ram

NFR_EASE_OF U
SE

Users should be able to
play the game even if they
don’t have experience in
playing video games, so
the controls must be
intuitive and basic.

UR_TUTORIAL,
UR_CONTROL_C
HANGE

At least 90% of users
should be able to play the
game/feel confident in
playing the game after
completing the tutorial
and seeing the controls.

References:
[1] 1. Sommerville, Software engineering. Essex: Pearson Education, 2015, pp.107
[2] I. Sommerville, Software engineering. Essex: Pearson Education, 2015, pp.122

